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ABSTRACT
Knowledge distillation (KD) has emerged as a promising technique
for addressing the computational challenges associated with deploy-
ing large-scale recommender systems. KD transfers the knowledge
of a massive teacher system to a compact student model, to reduce
the huge computational burdens for inference while retaining high
accuracy. The existing KD studies primarily focus on one-time dis-
tillation in static environments, leaving a substantial gap in their
applicability to real-world scenarios dealing with continuously in-
coming users, items, and their interactions. In this work, we delve
into a systematic approach to operating the teacher-student KD
in a non-stationary data stream. Our goal is to enable efficient de-
ployment through a compact student, which preserves the high
performance of the massive teacher, while effectively adapting to
continuously incoming data. We propose Continual Collaborative
Distillation (CCD) framework, where both the teacher and the stu-
dent continually and collaboratively evolve along the data stream.
CCD facilitates the student in effectively adapting to new data, while
also enabling the teacher to fully leverage accumulated knowledge.
We validate the effectiveness of CCD through extensive quanti-
tative, ablative, and exploratory experiments on two real-world
datasets. We expect this research direction to contribute to narrow-
ing the gap between existing KD studies and practical applications,
thereby enhancing the applicability of KD in real-world systems.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking; Rec-
ommender systems; Retrieval efficiency.
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1 INTRODUCTION
Recommender systems (RS) have been used in diverse industrial
platforms to enhance user experience, foster loyalty, and contribute
to business success [15, 18, 23]. In recent years, increasingly large
and sophisticated recommendation models, from graph neural
networks [38, 46] to large language models [2, 7, 50], have been
developed to identify users’ intricate preferences. Furthermore,
these large-scale models are often employed concurrently through
model ensembles to further improve recommendation performance
[16, 49]. However, this improved performance comes at the cost of
increased computations, memory resources, and inference latency,
which poses significant challenges for deployment in real-time
services and resource-constrained environments [4, 16, 43].

To overcome this issue, recent studies have employed knowl-
edge distillation (KD) [10, 33] (Figure 1a). KD serves as a model
compression technique that transfers knowledge from a massive
system (teacher) into a compact model (student), aiming to generate
a model that achieves both high effectiveness and efficiency. It first
constructs a massive teacher system, which often comprises multi-
ple large-scale models, to attain high performance [16, 49]. Then,
during the distillation process, the student is trained to replicate
the high-quality recommendations from the teacher system, which
are derived from its massive capacity. After the distillation, the
student becomes capable of achieving comparable performance to
the teacher [16, 36, 43]. Furthermore, the student has significantly
reduced inference latency, making it suitable for deployment.

However, existing KD studies have focused on one-time distil-
lation in static environments, overlooking real-world scenarios
handling a non-stationary data stream where new users, items,
and interactions are continuously incoming. A naive approach to
applying KD in the data stream is to repeatedly update the teacher
and generate a new student via distillation each time new data
arrives. However, this approach raises two critical problems: First,
the massive teacher system cannot be updated frequently, as train-
ing large-scale models requires significant time and resources [6].
Consequently, the deployed student remains static until the next
teacher update cycle, failing to provide recommendations that re-
flect up-to-date interactions as well as new users and items. Second,
conducting the distillation independently each time fails to fully
leverage the previously generated knowledge along the data stream.
This results in inefficient training and suboptimal performance.

A well-established approach for training a model with a non-
stationary data stream is continual learning (CL) [20, 26] (Figure
1b). When trained with the data stream, an ideal model should
seamlessly adapt to newly incoming data without forgetting pre-
vious knowledge from historical data. CL aims to strike a balance
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Figure 1: A conceptual comparison of (a) knowledge distilla-
tion, (b) continual learning, and (c) the proposed continual
collaborative distillation. 𝐶𝑇 and 𝐶𝑆 denote the update cycle
for the massive system (e.g., a weekly update) and the com-
pact model (e.g., a daily update), respectively.

between these two aspects, termed plasticity (i.e., adaptation to
new data) and stability (i.e., preserving previous knowledge) [26].
Although CL has been studied for RS [39, 40, 48], operating the
teacher-student KD in a data stream still remains unexplored. Most
existing CL methods focus on the continual updates of a single
model with sufficient capacity to learn effectively on its own. How-
ever, KD necessitates handling both the teacher and the student
which have distinct natures and update cycles. Also, the student
has a highly limited learning capability due to its small size, which
makes it more challenging to update effectively.

We propose Continual Collaborative Distillation (CCD), a new
approach to systematically operate the teacher-student KD in a non-
stationary data stream (Figure 1c). Our goal is to enable efficient
deployment through a compact student which preserves the high
performance of the massive teacher, while effectively adapting to
continuously incoming data. In CCD, the student model, which
can be updated frequently due to its small size, learns to adapt to
new interactions with a short update cycle (e.g., a daily update).
Meanwhile, the teacher system uncovers richer knowledge through
its larger capacity with a longer update cycle (e.g., a weekly update).
As shown in Figure 1c, within each teacher update cycle, we proceed
through three consecutive stages: (1) Compact student generation
via KD, (2) Continual student updates to provide recommendations
reflecting up-to-date interactions, (3) Teacher system update by
leveraging knowledge accumulated along the data stream.

We introduce new effective update strategies for both the teacher
and the student, considering their distinct natures. To complement
the student’s limited learning capability, we propose two techniques:
entity embedding initialization which facilitates the learning of new
users and items based on the recent prominent trends, and proxy-
guided replay learning which identifies forgotten knowledge and
aids in its preservation by replaying past predictions. Furthermore,
we propose an effective teacher update strategy that fully lever-
ages previously obtained model knowledge, including both from
the teacher-side and the student-side. By repeating the updating
along the data stream, CCD allows for collaboratively enhancing
both the teacher and the student; the student is enhanced by effec-
tively adapting to new entities and preserving previous knowledge
with the replay learning. This enhanced student knowledge is then

subsequently harnessed to improve the teacher system, which in
turn allows for generating a more powerful student model. Our
contributions are summarized as follows:
• We explore a new problem of operating teacher-student KD in
a non-stationary data stream, which has not been studied well.
This direction of research can contribute to bridging the gap
between the existing KD techniques and real-world applications.

• We introduce CCD framework, where both the teacher and the
student collaboratively evolve along the data stream. CCD facili-
tates the student’s effective adaptation to new data, while also
enabling the teacher to fully leverage accumulated knowledge.

• We validate the effectiveness of CCD through extensive experi-
ments on real-world datasets. Furthermore, we provide thorough
analyses to verify the validity of each proposed component.

2 RELATEDWORK
Knowledge distillation (KD). KD serves as a model compression
technique that transfers knowledge from a large teacher model
to a lightweight student model [10, 33]. In recent years, the in-
ference costs of recommender systems (RS) have progressively
increased, presenting challenges for their practical deployment.
Consequently, KD has gained much research attention to reduce
inference costs while maintaining high recommendation perfor-
mance [14, 16, 19, 21, 49]. Earlier work [36] transfers the point-wise
importance of top-ranked items by the teacher, and [14] proposes
a topology distillation that transfers relational knowledge from the
teacher representation space. Recent studies [12, 13, 16, 17, 24] have
delved into list-wise distillation to transfer the ranking orders of
items directly. They formulate the distillation as a ranking matching
problem and train the student to preserve the teacher’s permutation.
This approach has shown state-of-the-art performance in various
ranking-oriented applications such as recommendation [12, 13, 17]
and document retrieval [31, 47]. Furthermore, considering the re-
markable performance of a massive system consisting of multiple
large-scale models, [16, 49] introduce distillation methods tailored
for compressing knowledge of an ensembled system. These KD
methods have greatly alleviated the huge computational burdens
of deploying a large-scale RS, thereby expanding its applicability
to various environments.

However, existing KD studies have focused on one-time distil-
lation in static environments, leaving a substantial gap in their
application to real-world scenarios with continuously incoming
data. In this work, we delve into a systematic approach to operating
the teacher-student KD in a non-stationary data stream.
Continual learning (CL). Continual learning [20, 26, 30], also
known as lifelong learning or incremental learning, is a concept to
train a model with a non-stationary data stream. A major challenge
is to strike a balance between plasticity and stability [26], where
plasticity refers to the ability to learn new knowledge, and stabil-
ity focuses on retaining previous knowledge. Naively updating a
model on new data often fails to achieve this balance, resulting in
catastrophic forgetting of its previous knowledge [20]. Two popular
CL approaches are regularization [44, 45] and experience replay
[1, 35]. The regularization approach typically imposes regulariza-
tion constraints on the parameter space, discouraging the model
parameters from drastically changing from the previously trained
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ones. On the other hand, the replay approach involves reusing his-
torical data, by storing a subset of representative samples [1] or by
using a generative model trained on input distribution [35].

Due to its practical importance, CL has been actively studied
for RS. [39, 40, 44] have delved into the regularization approach.
[39, 44] have focused on structure-aware regularization for graph-
neural network-based models. More recently, [40] proposes a new
personalized weight adjustment to tailor the impact of regulariza-
tion for each user, pointing out that preserving the same amount
of historical information for all users is sub-optimal. On the other
hand, [1, 3, 29, 48] have focused on the replay approach. [1, 29]
select representative data based on interaction frequency, while
[3, 48] have focused on self-correcting learning by using an error
memory to store samples that the model previously failed to predict.

Though effective, these CLmethods have mostly been studied for
updating a singlemodel having sufficient capacity to learn effectively
on its own, which differs significantly from our problem. Operating
the teacher-student KD in a data stream still remains unexplored.

3 PROBLEM FORMULATION
3.1 Concept Definition
Definition 1 (Teacher-Student Knowledge Distillation). A mas-
sive teacher recommender system 𝑅𝑆𝑇 , which typically comprises
several large-scale models, achieves high performance through its
large capacity. However, it also incurs high computational costs
for inference. KD is employed to compress 𝑅𝑆𝑇 into a lightweight
student model 𝑆 [16]. The student model has significantly reduced
inference latency, making it well-suited for real-time services and
resource-constrained environments.
Definition 2 (Recommendation with Data Stream). A real-world
recommender system operates in a non-stationary data stream
where new users, items, and interactions are continuously incoming.
In many practical scenarios, a fixed-size time window of recent data
is employed to update the system [44]. Naturally, the data stream 𝐷

is viewed as consecutive blocks of interaction data [𝐷1, 𝐷2, ..., 𝐷𝐾 ]
with a certain time interval𝐶 . 𝐷𝑘 corresponds to set of interactions
collected from the timestamp 𝑡𝑘−1 to 𝑡𝑘 , where 𝑡𝑘 = 𝑡𝑘−1 +𝐶 . Each
block serves as training data for updating the system at each time
segment. At 𝑘-th block, the system optimizes its performance on
𝐷𝑘 while leveraging the knowledge obtained from the previous
blocks, 𝐷1, ..., 𝐷𝑘−1. Note that the system only uses the most recent
block for training without directly accessing the previous blocks
[40, 44, 48]. The performance is evaluated across the entire timeline.
Definition 3 (Teacher/Student update cycle). An update cycle for
a system signifies the frequency at which the system is updated to
adapt newly incoming interaction data [29]. It is often empirically
decided considering various factors such as available resources and
the amount of collected data. Let 𝐶𝑇 and 𝐶𝑆 denote update cycles
for the teacher and the student, respectively. In practice,𝐶𝑇 is much
larger than 𝐶𝑆 , as updating the teacher system requires more time
and resources compared to the student model. For instance, one
might opt for a weekly update cycle for the teacher (𝐶𝑇 = 7 days)
while allowing the student to update on a daily basis (𝐶𝑆 = 1 day).
It is important to note that we define the data blocks in terms of
the teacher system, thus the time interval is defined as 𝐶 = 𝐶𝑇 .

3.2 Problem Definition
We delve into a systematic approach to operate teacher-student
KD in a non-stationary data stream. Our goal is to enable efficient
deployment through a lightweight 𝑆 , preserving the high accuracy
of 𝑅𝑆𝑇 while effectively adapting to continuously incoming data.
This problem has two unique desiderata:
(1) The student should effectively adapt to continuously incoming

data by itself during𝐶𝑇 . That is, while the teacher remains static,
the student should cope with evolving preferences as well as
new users and items. However, due to its limited capacity, naive
updates of the student often lead to ineffective adaptation and
a substantial loss of previously acquired knowledge.

(2) The knowledge of teacher and student should be effectively
accumulated and leveraged throughout the data stream. The
conventional KD approach conducts distillation independently
for each time segment. This cannot fully leverage the knowledge
generated from previous blocks, leading to inefficient training
and suboptimal performance.

Lastly, it is worth noting that we aim for a model-agnostic solution,
enabling service providers to choose their preferred model for both
the teacher and the student according to their environments.

4 METHODOLOGY
4.1 Overview
We introduce a new Continual Collaborative Distillation (CCD)
framework, where both the teacher and the student evolve collab-
oratively along the non-stationary data stream. Assume that we
have 𝑅𝑆𝑇 updated using up to (𝑘 − 1)-th data block. During the
subsequent teacher update cycle (i.e., during collecting 𝑘-th block
for teacher update), CCD follows three consecutive stages:
(1) Student model generation (§4.2). We generate a compact

student model 𝑆 by compressing 𝑅𝑆𝑇 through KD. The student
model is used for deployment.

(2) Continual update of student (§4.3). The student model is
continually updated using non-stationary data with the cy-
cle 𝐶𝑆 . This process allows recommendations to aptly reflect
new users, new items, and up-to-date interactions. We intro-
duce new embedding initialization and proxy-guided replay
learning strategies to improve the training while preventing
the loss of previous knowledge.

(3) Teacher systemupdate (§4.4).When the teacher’s next update
cycle arrives, 𝑅𝑆𝑇 is updated using new interaction data 𝐷𝑘
accumulated during the cycle. We propose a new strategy for
selectively harnessing the knowledge obtained from the student
side to further enhance 𝑅𝑆𝑇 .

For each data block, CCD iterates these three consecutive stages
(§4.2-§4.4). In the subsequent sections, we explain how CCD oper-
ates for the 𝑘-th data block. Figure 2 provides an overview of CCD.

4.2 Stage 1: Student model generation via KD
Given the massive teacher system 𝑅𝑆𝑇(·;Θ𝑇

𝑘−1) which was updated
up to (𝑘 − 1)-th block, we generate a lightweight student model
𝑆 (·;𝜃𝑆

𝑘
) which will be deployed for the current 𝑘-th block. As KD

is the model-agnostic technique, the student model can be any
existing recommendation model that predicts the ranking score for
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Figure 2: Overview of CCD framework for 𝑘-th data block.

each user-item pair, i.e., 𝑆 : U × I → R, where U and I denote
the set of users and items, respectively.

In CCD framework, any off-the-shelf KD technique can be flex-
ibly employed to generate the student model. In this work, we
employ the recent list-wise distillation [12, 16] that trains the stu-
dent to emulate the item permutation (i.e., ranking orders) predicted
by the teacher. Let 𝜋𝑇𝑢 denote the item ranking list for each user
𝑢 predicted by 𝑅𝑆𝑇 . The list-wise distillation loss is defined as the
negative log-likelihood of permutation probability [16]1:

min
𝜃𝑆

L𝐾𝐷 = −
∑︁
𝑢∈U

log𝑝 (𝜋𝑇𝑢 | 𝜃𝑆 ). (1)

After KD, the distilled student can achieve low inference latency
due to its small size while preserving knowledge of 𝑅𝑆𝑇 .

4.3 Stage 2: Continual update of student with
incoming interactions

As 𝑅𝑆𝑇 cannot be updated during its cycle 𝐶𝑇 , the student model
needs to effectively adapt to continuously incoming data by itself.
Specifically, the student is updated per its own cycle 𝐶𝑆 (≪ 𝐶𝑇 ).

In this section, we explain how we update the student model.
We first present how CCD learns with new data to provide rec-
ommendations reflecting up-to-date interactions (§4.3.1). Then, we
introduce a new proxy-guided replay learning to support effec-
tive training by preventing the loss of previous knowledge (§4.3.2).
Lastly, we summarize the overall training objective (§4.3.3).

4.3.1 Learning with new interactions. We update the student
model using new interactions collected for the current data block.
Here, an important challenge arises when dealing with new entities
that did not exist in the previous data blocks. In practical applica-
tions, new users and new items continuously emerge. However, due
to the limited capacity, it is challenging for the student to effectively
learn their preference from scratch.

To facilitate learning for these new entities, we introduce a simple
yet effective entity embedding initialization technique. Let𝐺 denote
the user-item bipartite graph, where nodes are users and items, and
edges represent their interactions observed within the current data

1As this KD technique is not our contribution, we provide its details in Appendix A.1.
Note that CCD framework is not dependent on this specific KD technique.

block. For a given node 𝑖 , we denote Nℎ
𝑖
as the set of ℎ-hop neigh-

boring nodes in the graph. Recent studies [34, 41] have utilized the
1-hop neighbors to generate embeddings for new entities. Specif-
ically, the embeddings are initialized by aggregating the directly
interacted entity embeddings, i.e., e𝑖 = 𝐴𝐺𝐺 ({e𝑢 : 𝑢 ∈ N1

𝑖
}).

However, for new entities, 1-hop interactions are typically highly
limited. To supplement limited interactions, we leverage the 2-hop
relations (e.g., items purchased together, users who bought the same
item) based on the frequency information from the current data
block. Formally, we identify the set of prominent users and items,
denoted as PU and PI , which have top interaction frequency in
the current block. These entities reveal the up-to-date prominent
trends, such as highly in-demand or trending items, assisting in
comprehending newly emerging entities. We initialize embeddings
for new users and items as follows:

e𝑢 = 𝐴𝐺𝐺 ({e𝑥 : 𝑥 ∈ N1
𝑢 ∪ (N2

𝑢 ∩ PU )}),
e𝑖 = 𝐴𝐺𝐺 ({e𝑥 : 𝑥 ∈ N1

𝑖 ∪ (N2
𝑖 ∩ PI )}).

(2)

We use the simple mean pooling for the aggregation function
𝐴𝐺𝐺 (·). These initialized embeddings are added to the embedding
table of the student model.

Then, the student model is updated with new interactions within
the current data block. We employ the pair-wise ranking loss [32]:

min
𝜃𝑆

L𝐵𝑃𝑅 = −
∑︁
𝑢∈U

∑︁
𝑖∈N1

𝑢

∑︁
𝑗∉N1

𝑢

log𝜎 (𝑟𝑆𝑢,𝑖 − 𝑟𝑆𝑢,𝑗 ), (3)

where 𝜎 denotes the sigmoid function. 𝑟𝑆
𝑢,𝑖

= 𝑆 (𝑢, 𝑖) denotes the
ranking score predicted by the student.

4.3.2 Proxy-guided replay learning. Naively updating a model
with newly incoming interactions can result in catastrophic for-
getting, where the model significantly loses previously acquired
knowledge [39, 40]. This largely degrades the overall performance
of the model and further hinders the learning of new data. Further-
more, the student model has a highly limited capacity, which makes
it more challenging to update effectively.

As a solution, we introduce a new proxy-guided replay learn-
ing, which employs an external memory called proxy to assist the
student’s learning. The learning theory in neuroscience [28] posits
that humans do effective learning through two complementary sys-
tems: a fast learning system for short-term adaptation to specific
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Figure 3: Effects of proxy. After 𝐷4 and 𝐷5 (y-axis), we assess
Recall@20 on test sets from the previous blocks (x-axis). A
naive update of the student results in significant catastrophic
forgetting. Two proxies effectively accumulate the previous
knowledge from complementary perspectives. (Dataset: Yelp)
experiences, and a slow learning system for gradual acquisition of
structured knowledge. Drawing from the theory, we employ two
complementary memories for the student, referred to as plasticity
proxy focusing on rapid adaptation, and stability proxy emphasizing
long-term retention of knowledge. During the student’s update, we
utilize these proxies to identify forgotten preference knowledge
and assist in its preservation by replaying past predictions.
Stability and plasticity proxies.A proxy serves as a memory that
accumulates the model knowledge acquired along the data stream.
To efficiently implement the proxy, we employ the temporal mean
technique [37] which accumulates a model’s knowledge by the
exponential moving average of the model parameters. Specifically,
we construct the proxy by the temporal mean of the distilled student
models generated by KD (§4.2). We introduce two complementary
proxies: the plasticity proxy 𝑆𝑃𝑃 and the stability proxy 𝑆𝑆𝑃 . At
𝑘-th data block, the proxies are updated as follows:

𝜃𝑆𝑃
𝑘

= (1 −𝑤𝑆𝑃 ) · 𝜃𝑆𝑃𝑘−1 +𝑤𝑆𝑃 · 𝜃𝑆
𝑘
,

𝜃𝑃𝑃
𝑘

= (1 −𝑤𝑃𝑃 ) · 𝜃𝑃𝑃𝑘−1 +𝑤𝑃𝑃 · 𝜃𝑆
𝑘
.

(4)

𝜃𝑆
𝑘
denotes the parameters of the distilled student model from §4.2.

𝜃𝑆𝑃
𝑘

and 𝜃𝑃𝑃
𝑘

denote the parameters for the stability and plastic-
ity proxies that support training on 𝑘-th block, respectively. The
scalar weights are hyperparameters following the relationship:
0 < 𝑤𝑆𝑃 ≪ 𝑤𝑃𝑃 < 1. Therefore, the stability proxy is slowly
updated with the long-term retention of previous knowledge, while
the plasticity proxy is rapidly updated with an emphasis on recent
trends. These distinct proxies provide complementary views for
the previously acquired knowledge (Figure 3). Note that proxies are
updated once per block, right after KD from the teacher system.
Replay learning for forgotten knowledge. Using the proxies,
we identify forgotten preference knowledge and train the student to
recover it by replaying past predictions. A recommendation model
produces a ranked list of items for each user. In the list, the top-
ranked items correspond to the most probable predictions based on
the model’s knowledge of the user preference. In this regard, we
identify the forgotten knowledge that was previously captured but
is not well-reflected in the current model based on rank disparities
in the ranking lists; if items that were previously ranked near the
top now hold significantly lower ranks, it may suggest that the
model has forgotten knowledge related to them.

Given amodel𝐴, rank𝐴𝑢,𝑖 denotes the rank of item 𝑖 in the ranking
list of user 𝑢. A lower value indicates a higher ranking position, i.e.,
rank𝐴𝑢,∗ = 0 is the highest rank. For each item 𝑖 , the rank disparity
with respect to another model 𝐵 is defined as follows:

𝑑𝑢𝑖 (𝐴, 𝐵) = exp(𝜖 · (rank𝐴𝑢,𝑖 − rank𝐵𝑢,𝑖 )), (5)

where 𝜖 > 0 is a hyperparameter to control the sharpness of the
distribution. We utilize the exponential function to put a stronger
emphasis on items with large rank disparities. A high value of
𝑑𝑢
𝑖
(𝐴, 𝐵) indicates that item 𝑖 is ranked significantly higher by

model 𝐵 compared to model 𝐴.
We create top-𝑁 recommendation lists for each user from the stu-

dent and proxy models, then construct item sets for replay learning
based on the rank disparity. Specifically, we obtain 𝐼𝑆𝑃 by sampling
items from the top-𝑁 list of 𝑆𝑆𝑃 , using a probability distribution
𝑝 (𝑖) ∝ 𝑑𝑢

𝑖
(𝑆, 𝑆𝑆𝑃 ). Similarly, we acquire 𝐼𝑃𝑃 by sampling items

from the top-𝑁 list of 𝑆𝑃𝑃 , using a distribution 𝑝 (𝑖) ∝ 𝑑𝑢
𝑖
(𝑆, 𝑆𝑃𝑃 ).

Then, we train the student to recover previous knowledge on the
identified items by replaying the predictions from the proxies:

min
𝜃𝑆

L𝑅𝐸 = −
∑︁
𝑢

(
∑︁
𝑖∈𝐼𝑆𝑃

ℓ (𝑟𝑆𝑢,𝑖 , 𝑟
𝑆𝑃
𝑢,𝑖 ) +

∑︁
𝑖∈𝐼𝑃𝑃

ℓ (𝑟𝑆𝑢,𝑖 , 𝑟
𝑃𝑃
𝑢,𝑖 )) . (6)

ℓ (·, ·) denotes the error function between two predictions. In this
work, we employ the simple binary cross-entropy loss. It is worth
noting that I𝑆𝑃 and I𝑃𝑃 are dynamically constructed based on the
current state of the student, enabling the effective identification and
recovery of forgotten knowledge. This is an important distinction
from the existing replay-based CL methods for RS [1, 29, 48], which
leverage a pre-constructed set of historical data without considering
the current state of the student.

4.3.3 The overall objective for student update. The student
model is updated with the new interaction data per 𝐶𝑆 , assisted by
the stability and plasticity proxies. The overall objective is:

min
𝜃𝑆

L𝐵𝑃𝑅 + 𝜆𝑅𝐸 · L𝑅𝐸 . (7)

𝜆𝑅𝐸 is a hyperparameter controlling the impact of replay learning.

4.4 Stage 3: Teacher system update
Once the teacher update cycle arrives (i.e., the 𝑘-th block has been
completely collected), we update 𝑅𝑆𝑇 . To update a system on the
data stream, two types of losses are typically employed [39, 40]: (1)
collaborative filtering loss to learn new user-item interactions, and
(2) continual learning loss to mitigate forgetting of previous system
knowledge. We also employ these two objectives. Moreover, we
introduce an additional objective to fully leverage the knowledge
obtained from the student side.

4.4.1 Leveraging the student-side knowledge. We argue that
𝑅𝑆𝑇 can be further improved by leveraging knowledge obtained
from the student-side in two aspects: First, the updated student
model contains up-to-date knowledge of the current data block,
unlike 𝑅𝑆𝑇 which has not been updated for a while. In particular,
using the student model, we can obtain potential interactions that
are not directly observed in the current block but are likely to
be observed in the future. Second, the proxies, which accumulate
knowledge acquired throughout the data stream, serve as valuable
knowledge sources to mitigate catastrophic forgetting. While it is
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Algorithm 1: CCD algorithm for 𝑘-th data block
Input :Data stream 𝐷 , Teacher system 𝑅𝑆𝑇 ( ·;Θ𝑇

𝑘−1 ) , Proxies
𝑆𝑆𝑃 ( ·;𝜃𝑆𝑃

𝑘−1 ) , 𝑆
𝑃𝑃 ( ·;𝜃𝑃𝑃

𝑘−1 )
Output :Updated teacher system 𝑅𝑆𝑇 ( ·;Θ𝑇

𝑘
) , Updated proxies

𝑆𝑆𝑃 ( ·;𝜃𝑆𝑃
𝑘

) , 𝑆𝑃𝑃 ( ·;𝜃𝑃𝑃
𝑘

)

1 Generate a new distilled student 𝑆 via KD ⊲ Eq.1
2 Update the stability and plasticity proxies 𝑆𝑆𝑃 , 𝑆𝑃𝑃 ⊲ Eq.4
3 for every𝐶𝑆 do
4 Update the student model 𝑆 ⊲ Eq.7

5 Update the teacher system 𝑅𝑆𝑇 ⊲ Eq.9

possible to consider utilizing separate proxies for 𝑅𝑆𝑇 , given the
large size of 𝑅𝑆𝑇 , employing the student-side proxies through KD
is much more cost-effective in terms of both space and time.

During the teacher training, we selectively leverage the most
confident predictions from the student-side models (i.e., the stu-
dent and two proxies) based on the rank disparity. Specifically, we
identify items ranked near the top by the student-side models but
assigned significantly lower rankings by 𝑅𝑆𝑇 . From the top-𝑁 list
of each student-side model 𝑆∗ ∈ {𝑆, 𝑆𝑆𝑃 , 𝑆𝑃𝑃 }, we obtain 𝐼𝑆∗→𝑇 by
sampling items using a probability distribution 𝑝 (𝑖) ∝ 𝑑𝑢

𝑖
(𝑅𝑆𝑇 , 𝑆∗).

The student-side knowledge is transferred to the teacher as follows:

LS→T = −
∑︁
𝑢

∑︁
𝑆∗

∑︁
𝑖∈𝐼𝑆∗→𝑇

ℓ (𝑟𝑇𝑢,𝑖 , 𝑟
𝑆∗
𝑢,𝑖 ). (8)

4.4.2 The overall objective for teacher update. 𝑅𝑆𝑇 is updated
with new interaction data, assisted by the student-side knowledge.

min
Θ𝑇

L𝐶𝐹 + 𝜆𝐶𝐿 · L𝐶𝐿 + 𝜆S→T · LS→T . (9)

Θ𝑇 denotes the training parameters of 𝑅𝑆𝑇 . L𝐶𝐹 is the original
collaborative filtering loss (e.g., binary cross-entropy) used to train
𝑅𝑆𝑇 . L𝐶𝐿 is the continual learning loss. CCD does not require a
specific CL technique, and various CLmethods for RS can be flexibly
employed. In this work, we use the recently proposed method [40].
𝜆𝐶𝐿 and 𝜆S→T are the hyperparameters balancing the losses. As𝑅𝑆𝑇
evolves during its training, we gradually reduce the impact of the
student-side knowledge.We use a simple annealing schedule, where
its impact at 𝑡-th epoch is controlled as 𝜆S→T = 𝜆0S→T · 𝑒−𝑡/𝜏 . Here,
𝜆0S→T controls the initial impact, and 𝜏 controls the annealing speed.
The overall training process is outlined in Algorithm 1.
Remarks.A key aspect of CCD involves the collaborative evolution
of the teacher and student. To elaborate, we enhance the student by
effectively adapting to new entities and mitigating the forgetting
problem using proxies (§4.3). This enhanced student knowledge is
then subsequently harnessed to improve the teacher (§4.4), which
in turn allows for generating a more powerful student (§4.2).

5 EXPERIMENTS
5.1 Experimental Setup
We provide details of setup in Appendix A.2.

5.1.1 Datasets. We use two real-world datasets: Gowalla and
Yelp [21, 44]. To simulate the non-stationary data streams, we split
each dataset such that the first 50% forms the base block (𝐷0),
and the remaining 50% is evenly divided into 5 incremental blocks

Table 1: Data block statistics of two datasets.
Data Blocks D0 D1 D2 D3 D4 D5

# of accumulated users 19,668 21,266 24,107 26,840 29,106 29,858
# of accumulated items 39,354 39,809 40,381 40,691 40,908 40,988

# of new users – 1,598 2,841 2,733 2,266 752
# of new items – 455 572 310 217 80G

ow
al
la

# of interactions 513,732 62,336 112,167 123,042 126,474 89,713
# of accumulated users 12,248 13,367 13,896 14,399 14,761 14,950
# of accumulated items 10,822 11,345 11,634 11,970 12,197 12,261

# of new users – 1,119 529 503 362 189
# of new items – 523 289 336 227 64Ye

lp

# of interactions 151,084 51,280 34,501 33,593 37,970 34,189

(𝐷1, ..., 𝐷5), according to the temporal timestamp [29, 44]. For each
incremental block, we randomly divide the interactions of each
user into train/validation/test sets in 80%/10%/10% split. Table 1
presents the statistics of each block.

5.1.2 Teacher-student KD setup. As our focus is on operating
the teacher-student KD in a data stream, we closely follow the setup
of the existing KD studies [16, 24, 36]. For teacher, we construct a
massive system by an ensemble of more than five large models [16].
We increase the capacity of the teacher system until its performance
is no longer improved. For student, we employ two widely used
backbone models: a matrix factorization (MF)-based model [32] and
a graph neural network (GNN)-based model [8]. We set a small
embedding size for the student (8 for Yelp, and 16 for Gowalla),
considering the teacher size for each dataset [16, 24]. The student
update cycle is set as one-tenth of the teacher cycle. Note that to
ensure consistent evaluation for both the teacher and student, all
models are assessed on the same test set after training with all
interactions within each data block. Further details on KD setup
including teacher configuration, and the number of parameters are
provided in Appendix A.2.2.

5.1.3 Evaluation protocol. We closely follow the evaluation
protocol of the existing CL methods [5, 40, 44]. All models are
first trained on 𝐷0, then continually updated using the incremental
blocks. Specifically, at 𝑘-th block, the model is updated using 𝐷𝑘 ,
while access to past blocks 𝐷0, ..., 𝐷𝑘−1 is forbidden [5, 40, 44].

The evaluation of CL focuses on assessing how effectively a
model achieves a balance between plasticity and stability. We em-
ploy two CL metrics proposed in [5]. We construct the matrix
𝐴 ∈ R𝐾×𝐾 , where each element 𝑎𝑖 𝑗 denotes the recommendation
performance on block 𝑗 after completing training on block 𝑖 . After
training on each 𝑘-th block, we report two metrics:
• Learning Average (LA) = 1

𝑘

∑𝑘
𝑖=1 𝑎𝑖,𝑖 . It assesses how well a

model adapts to new blocks, focusing on the plasticity aspect.
• Retained Average (RA) = 1

𝑘

∑𝑘
𝑖=1 𝑎𝑘,𝑖 . It assesses how well a

model retains past knowledge, focusing on the stability aspect.
A model’s overall capability is summarized by the harmonic mean
of LA and RA, denoted by H-mean [5]. To evaluate the recom-
mendation performance, we employ Recall@20 and NDCG@20
[5, 22, 40, 44]. We report the results from five independent runs.

5.1.4 Baselines. To evaluate CCD, which trains both the teacher
and student in a data stream, we compare various CL approaches.
• Full-Batch uses all the historical data to train the model from
scratch. We report its results solely for reference purposes.

• Fine-Tune is a naive baseline that updates the model using its
original loss function on new data.
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• LWC-KD-PIW [40] is the state-of-the-art regularization-based
CL method for recommendation. It applies the regularization
(i.e., LWC-KD [39]) with personalized weights, adjusting the
regularization effects considering the dynamics of each user.

• ReLoop2 [48] is the state-of-the-art replay-based CL method for
recommendation. It introduces self-correcting learning using an
error memory that stores samples that the model failed to predict.

For the student, we further devise two baselines that represent the
best solution that combines the existing KD and CL methods; along
the data stream, we update the teacher using the state-of-the-art
CL method (i.e., LWC-KD-PIW). Then, for each block, we generate
a compact student via KD [16], which is subsequently updated by
either Fine-tune or LWC-KD-PIW, referred to as KD + Fine-tune
and KD + LWC-KD-PIW, respectively. Lastly, our approach is:

• CCD trains the teacher and student collaboratively along the
data stream.We use the same KD technique [16] for stage 1 (L𝐾𝐷
in Eq.1) and LWC-KD-PIW [40] for stage 3 (L𝐶𝐿 in Eq.9).

5.1.5 Implementation Details. We utilize PyTorch with CUDA
from RTX A6000 and AMD EPYC 7313 CPU. All hyperparameters
are tuned via grid search on the validation set. The learning rate and
𝐿2 regularization for the Adam optimizer are chosen from {0.001,
0.005, 0.01} and {0.0001, 0.0005, 0.001}, respectively. For hyperpa-
rameters related to the list-wise KD, we follow the setup from [16].
The impacts of continual learning 𝜆𝐶𝐿 is chosen from {0.001, 0.01,
0.1}. For CCD, 𝑤𝑆𝑃 and 𝑤𝑃𝑃 for updating stability and plasticity
proxies are chosen from {0.0, 0.1} and {0.9, 1.0}, respectively. The
number of item samples 𝐼𝑃𝑃 , 𝐼𝑆𝑃 , 𝐼𝑆∗→𝑇 is chosen from {1, 3, 5}. The
remaining hyperparameters of CCD are set to their default values.
The number of prominent users PU and items PI are set to 20.
The rank disparity-based sampling is conducted from the top-50
list of each model (i.e., 𝑁 = 50). We set 𝜖 = 10−3, 𝜏 = 5, 𝜆𝑅𝐸 = 0.5,
and 𝜆0S→T = 0.5. For baseline-specific hyperparameters, we follow
the search ranges provided in the original papers.

5.2 Performance Comparison
5.2.1 Main results. Table 2 and Table 3 show the overall per-
formances of the teacher systems and student models optimized
by each compared method. Overall, CCD performs better than all
baselines in terms of both adapting to new data (LA) and retain-
ing previous knowledge (RA), achieving a good balance between
them (H-mean). Also, CCD consistently improves both the teacher
and student, with the improvements often gradually increasing
throughout the data stream (Figure 4). We analyze the results from
various perspectives:
Teacher-side. Teacher systems trained with CCD consistently
achieve higher H-mean across all data blocks compared to state-
of-the-art CL methods, including both regularization-based (i.e.,
LWC-KD-PIW) and replay-based (i.e., ReLoop2) methods. Unlike
the CL methods that update the teacher by itself, CCD additionally
leverages the student-side knowledge. As discussed in §4.4.1, the
student-side models provide up-to-date knowledge from the up-
dated student as well as historical knowledge accumulated via two
complementary proxies. This can aid the teacher in adapting to new
data more effectively while retaining past knowledge. Interestingly,
we observe that the forgetting phenomenon is exacerbated through

the ensemble for the teacher. We conjecture that this amplification
could stem from the combined effect of individual model forgetting
within the ensemble, leaving further investigation for future study.
Student-side. Studentmodels trainedwith CCD consistently achieve
higher H-mean compared to both state-of-the-art CL methods and
the KD-enhanced variants (i.e., KD + Fine-Tune/LWC-KD-PIW).
Overall, methods that leverage KD from the teacher systems (i.e.,
KD + Fine-Tune/LWC-KD-PIW, CCD) achieve higher performance
than the remaining methods training the student by itself. This
shows the importance of leveraging extensive teacher knowledge.
Moreover, we observe that the effectiveness of the CL methods is
rather limited for the student models, particularly for the latter
blocks (i.e., D4 and D5). The student has a highly limited capacity
and learning capability, making it more challenging to update ef-
fectively. This aspect has not been explicitly considered in previous
CL methods. CCD introduces two new strategies, entity embedding
initialization and proxy-guided replay learning, which effectively
support the student’s learning process.

It is also noted that CCD even generally outperforms Full-Batch
in terms of LA. Full-Batch is certainly the strongest baseline for
RA (stability), as it learns from all observed historical data. How-
ever, it is not always the strongest method for LA (plasticity), as
it treats all data equally without putting emphasis on the latest
interactions. CCD effectively learns the latest interactions while
preserving previous knowledge, which leads to enhanced perfor-
mance in both LA and RA.
Collaborative evolution. Figure 4 presents the absolute H-mean
gain of CCD over the best CL competitor. We report the results of
Recall@20with the GNN-based student. In CCD, the teacher and the
student collaboratively improve each other by mutual knowledge
exchange (§4.2, §4.4). These improvements accumulate over time,
progressively refining both the teacher and student models. As a
result, the performance gap between CCD and the CL competitor
generally widens over time, which ascertains the collaborative
evolution in CCD.

5.2.2 Accuracy-efficiency comparison. Table 4 compares the
accuracy and efficiency aspects of teacher and student, trained by
the best CL method (i.e., LWC-KD-PIW) and CCD, respectively. We
increase the student size until it achieves comparable performance
to the teacher. Then, we report the average H-mean (Recall@20)
for all blocks, the number of parameters, and the time required for
training and inference. We utilize PyTorch with CUDA from RTX
A6000 and AMD EPYC 7313 CPU. Compared to the massive teacher
system which has significant computational costs for training and
consolidating the multiple large-scale models, the compact student
model trained with CCD significantly reduces the huge compu-
tational burdens while maintaining the high performance of the
teacher system.

Lastly, we highlight that the KD process takes negligible time
compared to the teacher update. Specifically, on the Yelp dataset,
KD takes about 8 minutes, whereas the teacher update takes about
107 minutes. Considering the student update takes about 5 minutes,
the KD process, followed by student updates, is more efficient than
repetitive updates of the large-scale teacher, making it more suitable
for real-time applications.
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Table 2: The overall performance (Recall@20) comparison. * denotes 𝑝 < 0.05 for the paired t-test on CCD with the best baseline.
Gowalla After 𝐷1 After 𝐷2 After 𝐷3 After 𝐷4 After 𝐷5

LA RA H-mean LA RA H-mean LA RA H-mean LA RA H-mean LA RA H-mean

Teacher

Full-Batch 0.1758 0.1752 0.1755 0.1760 0.1804 0.1782 0.1739 0.1774 0.1756 0.1753 0.1794 0.1773 0.1767 0.1784 0.1775
Fine-Tune 0.1725 0.1544 0.1629 0.1714 0.0957 0.1228 0.1695 0.0828 0.1113 0.1700 0.0717 0.1009 0.1722 0.0577 0.0864
LWC-KD-PIW 0.1826 0.1483 0.1637 0.1791 0.1141 0.1394 0.1772 0.1023 0.1297 0.1779 0.0903 0.1198 0.1797 0.0826 0.1132
ReLoop2 0.1706 0.1570 0.1635 0.1595 0.1454 0.1521 0.1536 0.1243 0.1374 0.1512 0.1087 0.1265 0.1482 0.0980 0.1180
CCD w/ MF student 0.1823 0.1623* 0.1717* 0.1784 0.1524* 0.1644* 0.1763 0.1429* 0.1579* 0.1764 0.1378* 0.1547* 0.1779 0.1302* 0.1504*
CCD w/ GNN student 0.1809 0.1619 0.1709* 0.1784 0.1513* 0.1637* 0.1764 0.1400 0.1561* 0.1764 0.1333* 0.1519* 0.1787 0.1246* 0.1468*

Student
(MF)

Full-Batch 0.1303 0.1318 0.1310 0.1296 0.1327 0.1311 0.1293 0.1338 0.1315 0.1310 0.1360 0.1335 0.1324 0.1383 0.1353
LWC-KD-PIW 0.1261 0.1134 0.1194 0.1281 0.0897 0.1055 0.1287 0.0914 0.1069 0.1305 0.0789 0.0983 0.1342 0.0694 0.0915
ReLoop2 0.1101 0.1119 0.1110 0.1066 0.1055 0.1060 0.1023 0.0998 0.1010 0.1008 0.0892 0.0946 0.1003 0.0826 0.0906
KD + Fine-Tune 0.1309 0.1457 0.1379 0.1273 0.1153 0.1210 0.1271 0.1023 0.1134 0.1272 0.1031 0.1139 0.1292 0.0835 0.1014
KD + LWC-KD-PIW 0.1292 0.1442 0.1363 0.1249 0.1235 0.1242 0.1247 0.1047 0.1138 0.1284 0.0888 0.1050 0.1301 0.0842 0.1022
CCD 0.1446* 0.1457 0.1451 0.1333 0.1432* 0.1381* 0.1280 0.1416* 0.1345* 0.1255 0.1363* 0.1307* 0.1249 0.1286* 0.1267*

Student
(GNN)

Full-Batch 0.1390 0.1393 0.1391 0.1408 0.1449 0.1428 0.1411 0.1446 0.1428 0.1431 0.1454 0.1442 0.1456 0.1468 0.1462
LWC-KD-PIW 0.1380 0.1034 0.1182 0.1369 0.0837 0.1039 0.1369 0.0892 0.1080 0.1370 0.0794 0.1005 0.1398 0.0753 0.0979
ReLoop2 0.1277 0.1025 0.1137 0.1256 0.0950 0.1082 0.1248 0.0878 0.1031 0.1254 0.0844 0.1009 0.1282 0.0759 0.0953
KD + Fine-Tune 0.1523 0.1495 0.1509 0.1506 0.1318 0.1406 0.1486 0.1115 0.1274 0.1496 0.0991 0.1192 0.1525 0.0872 0.1110
KD + LWC-KD-PIW 0.1523 0.1496 0.1509 0.1507 0.1323 0.1409 0.1493 0.1052 0.1234 0.1502 0.0966 0.1176 0.1534 0.0871 0.1111
CCD 0.1681* 0.1421 0.1540 0.1622 0.1428* 0.1519* 0.1590 0.1376* 0.1475* 0.1584 0.1330* 0.1446* 0.1598 0.1202* 0.1372*

Yelp After 𝐷1 After 𝐷2 After 𝐷3 After 𝐷4 After 𝐷5
LA RA H-mean LA RA H-mean LA RA H-mean LA RA H-mean LA RA H-mean

Teacher

Full-Batch 0.1135 0.1145 0.1140 0.1096 0.1164 0.1129 0.1070 0.1159 0.1113 0.1064 0.1141 0.1101 0.1044 0.1151 0.1095
Fine-Tune 0.1210 0.1001 0.1096 0.1122 0.0716 0.0874 0.1087 0.0562 0.0741 0.1058 0.0488 0.0668 0.1060 0.0548 0.0722
LWC-KD-PIW 0.1235 0.1022 0.1118 0.1141 0.0675 0.0848 0.1118 0.0552 0.0739 0.1083 0.0491 0.0676 0.1075 0.0499 0.0682
ReLoop2 0.1051 0.0836 0.0931 0.0949 0.0563 0.0707 0.0927 0.0550 0.0690 0.0898 0.0514 0.0654 0.0894 0.0469 0.0615
CCD w/ MF student 0.1253 0.1128 0.1187 0.1214* 0.1007* 0.1101* 0.1231* 0.0980* 0.1091* 0.1213* 0.0940* 0.1059* 0.1197* 0.0921* 0.1041*
CCD w/ GNN student 0.1244 0.1079 0.1156* 0.1202 0.0991* 0.1086* 0.1212 0.0971* 0.1078* 0.1209 0.0950* 0.1064* 0.1198* 0.0914* 0.1037*

Student
(MF)

Full-Batch 0.0805 0.0805 0.0805 0.0766 0.0785 0.0775 0.0746 0.0755 0.0750 0.0723 0.0764 0.0743 0.0705 0.0767 0.0735
LWC-KD-PIW 0.0811 0.0795 0.0803 0.0770 0.0621 0.0688 0.0743 0.0591 0.0658 0.0725 0.0553 0.0627 0.0719 0.0516 0.0601
ReLoop2 0.0796 0.0796 0.0796 0.0775 0.0778 0.0776 0.0734 0.0748 0.0741 0.0699 0.0690 0.0694 0.0671 0.0643 0.0657
KD + Fine-Tune 0.0882 0.1058 0.0962 0.0858 0.0962 0.0907 0.0846 0.0879 0.0862 0.0843 0.0822 0.0832 0.0806 0.0757 0.0781
KD + LWC-KD-PIW 0.0863 0.1037 0.0942 0.0867 0.0995 0.0927 0.0843 0.0885 0.0863 0.0842 0.0824 0.0833 0.0833 0.0735 0.0781
CCD 0.1037* 0.1043 0.1040* 0.0978* 0.1004 0.0991* 0.0923* 0.0902 0.0912* 0.0901* 0.0873 0.0887* 0.0885* 0.0870* 0.0877*

Student
(GNN)

Full-Batch 0.0873 0.0894 0.0883 0.0840 0.0874 0.0857 0.0824 0.0884 0.0853 0.0817 0.0898 0.0856 0.0799 0.0890 0.0842
LWC-KD-PIW 0.0937 0.0726 0.0818 0.0878 0.0495 0.0633 0.0876 0.0442 0.0588 0.0856 0.0383 0.0529 0.0856 0.0383 0.0529
ReLoop2 0.0825 0.0726 0.0772 0.0769 0.0550 0.0641 0.0765 0.0494 0.0600 0.0752 0.0528 0.0620 0.0762 0.0510 0.0611
KD + Fine-Tune 0.0997 0.1022 0.1009 0.0992 0.0940 0.0965 0.0970 0.0869 0.0917 0.0953 0.0845 0.0896 0.0974 0.0808 0.0883
KD + LWC-KD-PIW 0.0986 0.1007 0.0996 0.0974 0.0928 0.0950 0.0954 0.0874 0.0912 0.0936 0.0843 0.0887 0.0958 0.0809 0.0877
CCD 0.1136* 0.1054* 0.1093* 0.1084* 0.0982 0.1030* 0.1097* 0.0930 0.1007* 0.1090* 0.0913 0.0994* 0.1100* 0.0878 0.0977*

Table 3: The overall performance (NDCG@20) comparison. * denotes 𝑝 < 0.05 for the paired t-test on CCD with the best baseline.
Gowalla After 𝐷1 After 𝐷2 After 𝐷3 After 𝐷4 After 𝐷5

LA RA H-mean LA RA H-mean LA RA H-mean LA RA H-mean LA RA H-mean

Teacher

Full-Batch 0.0897 0.0893 0.0895 0.0879 0.0900 0.0889 0.0864 0.0874 0.0869 0.0863 0.0870 0.0866 0.0864 0.0860 0.0862
Fine-Tune 0.0858 0.0752 0.0802 0.0848 0.0457 0.0594 0.0837 0.0380 0.0523 0.0838 0.0329 0.0472 0.0852 0.0268 0.0408
LWC-KD-PIW 0.0919 0.0725 0.0811 0.0889 0.0543 0.0674 0.0875 0.0477 0.0617 0.0876 0.0426 0.0573 0.0885 0.0390 0.0541
ReLoop2 0.0853 0.0769 0.0809 0.0777 0.0697 0.0735 0.0741 0.0589 0.0656 0.0721 0.0506 0.0595 0.0702 0.0455 0.0552
CCD w/ MF student 0.0915 0.0804 0.0856* 0.0877 0.0731* 0.0797* 0.0857 0.0681* 0.0759* 0.0851 0.0651* 0.0738* 0.0853 0.0606* 0.0709*
CCD w/ GNN student 0.0903 0.0794 0.0845* 0.0871 0.0718 0.0787* 0.0854 0.0660* 0.0745* 0.0848 0.0628* 0.0722* 0.0852 0.0584* 0.0693*

Student
(MF)

Full-Batch 0.0664 0.0665 0.0664 0.0638 0.0645 0.0641 0.0635 0.0649 0.0642 0.0633 0.0652 0.0642 0.0634 0.0653 0.0643
LWC-KD-PIW 0.0620 0.0554 0.0585 0.0619 0.0426 0.0505 0.0616 0.0427 0.0504 0.0620 0.0368 0.0462 0.0641 0.0328 0.0434
ReLoop2 0.0550 0.0554 0.0552 0.0515 0.0506 0.0510 0.0491 0.0473 0.0482 0.0478 0.0418 0.0446 0.0472 0.0382 0.0422
KD + Fine-Tune 0.0643 0.0731 0.0684 0.0610 0.0549 0.0578 0.0607 0.0481 0.0537 0.0603 0.0485 0.0538 0.0611 0.0389 0.0475
KD + LWC-KD-PIW 0.0641 0.0726 0.0681 0.0607 0.0601 0.0604 0.0601 0.0486 0.0537 0.0612 0.0419 0.0497 0.0616 0.0392 0.0479
CCD 0.0733* 0.0738 0.0735* 0.0653* 0.0683* 0.0668* 0.0622 0.0674* 0.0647* 0.0602 0.0643* 0.0622* 0.0591 0.0600* 0.0595*

Student
(GNN)

Full-Batch 0.0709 0.0707 0.0708 0.0700 0.0719 0.0709 0.0696 0.0706 0.0701 0.0696 0.0702 0.0699 0.0701 0.0701 0.0701
LWC-KD-PIW 0.0692 0.0496 0.0578 0.0682 0.0398 0.0503 0.0672 0.0405 0.0505 0.0665 0.0384 0.0487 0.0682 0.0278 0.0395
ReLoop2 0.0550 0.0554 0.0552 0.0515 0.0506 0.0510 0.0491 0.0473 0.0482 0.0478 0.0418 0.0446 0.0472 0.0382 0.0422
KD + Fine-Tune 0.0755 0.0697 0.0725 0.0731 0.0591 0.0654 0.0717 0.0477 0.0573 0.0714 0.0448 0.0551 0.0732 0.0385 0.0505
KD + LWC-KD-PIW 0.0751 0.0695 0.0722 0.0729 0.0589 0.0652 0.0715 0.0491 0.0582 0.0712 0.0454 0.0554 0.0730 0.0381 0.0501
CCD 0.0716 0.0715 0.0715 0.0707 0.0674* 0.0690* 0.0703 0.0650* 0.0675* 0.0704 0.0620* 0.0659* 0.0712 0.0557* 0.0625*

Yelp After 𝐷1 After 𝐷2 After 𝐷3 After 𝐷4 After 𝐷5
LA RA H-mean LA RA H-mean LA RA H-mean LA RA H-mean LA RA H-mean

Teacher

Full-Batch 0.0468 0.0484 0.0476 0.0444 0.0474 0.0459 0.0433 0.0468 0.0450 0.0426 0.0473 0.0448 0.0413 0.0449 0.0430
Fine-Tune 0.0502 0.0403 0.0447 0.0462 0.0304 0.0367 0.0451 0.0263 0.0332 0.0438 0.0215 0.0288 0.0435 0.0209 0.0282
LWC-KD-PIW 0.0505 0.0379 0.0433 0.0461 0.0259 0.0332 0.0447 0.0216 0.0291 0.0431 0.0175 0.0249 0.0429 0.0169 0.0242
ReLoop2 0.0449 0.0336 0.0384 0.0416 0.0257 0.0318 0.0400 0.0228 0.0290 0.0386 0.0219 0.0279 0.0383 0.0205 0.0267
CCD w/ MF student 0.0518 0.0454* 0.0484* 0.0499* 0.0396* 0.0442* 0.0506* 0.0388* 0.0439* 0.0499* 0.0369* 0.0424* 0.0495* 0.0356* 0.0414*
CCD w/ GNN student 0.0496 0.0414 0.0451 0.0471 0.0384* 0.0423* 0.0465 0.0372* 0.0413* 0.0460* 0.0351* 0.0398* 0.0458 0.0334* 0.0386*

Student
(MF)

Full-Batch 0.0334 0.0332 0.0333 0.0307 0.0310 0.0308 0.0297 0.0299 0.0298 0.0287 0.0302 0.0294 0.0280 0.0304 0.0292
LWC-KD-PIW 0.0333 0.0325 0.0329 0.0313 0.0246 0.0275 0.0298 0.0236 0.0263 0.0290 0.0222 0.0251 0.0285 0.0204 0.0238
ReLoop2 0.0327 0.0327 0.0327 0.0310 0.0314 0.0312 0.0292 0.0297 0.0294 0.0279 0.0279 0.0279 0.0266 0.0253 0.0259
KD + Fine-Tune 0.0361 0.0435 0.0395 0.0346 0.0389 0.0366 0.0339 0.0359 0.0349 0.0338 0.0334 0.0336 0.0317 0.0303 0.0310
KD + LWC-KD-PIW 0.0358 0.0422 0.0387 0.0336 0.0365 0.0350 0.0336 0.0343 0.0339 0.0333 0.0290 0.0310 0.0332 0.0264 0.0294
CCD 0.0424* 0.0428 0.0426* 0.0392* 0.0399 0.0395* 0.0370* 0.0357 0.0363* 0.0358* 0.0342 0.0350* 0.0349 0.0332* 0.0340*

Student
(GNN)

Full-Batch 0.0363 0.0370 0.0366 0.0339 0.0355 0.0347 0.0331 0.0357 0.0344 0.0326 0.0356 0.0340 0.0320 0.0353 0.0336
LWC-KD-PIW 0.0397 0.0293 0.0337 0.0367 0.0195 0.0255 0.0365 0.0177 0.0238 0.0354 0.0147 0.0208 0.0357 0.0153 0.0214
ReLoop2 0.0344 0.0291 0.0315 0.0319 0.0221 0.0261 0.0312 0.0191 0.0237 0.0306 0.0207 0.0247 0.0315 0.0200 0.0245
KD + Fine-Tune 0.0406 0.0416 0.0411 0.0398 0.0370 0.0383 0.0386 0.0342 0.0363 0.0376 0.0329 0.0351 0.0385 0.0310 0.0343
KD + LWC-KD-PIW 0.0410 0.0414 0.0412 0.0400 0.0367 0.0383 0.0391 0.0348 0.0368 0.0379 0.0324 0.0349 0.0387 0.0307 0.0342
CCD 0.0411 0.0412 0.0411 0.0401 0.0392 0.0396* 0.0411* 0.0366* 0.0387* 0.0407* 0.0355* 0.0379* 0.0415* 0.0339* 0.0373*
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Figure 4: H-mean gain of CCD over the best CL competitor.

Table 4: Accuracy and efficiency comparison. Train time
refers to the time required to train the model until conver-
gence. Inference time indicates the average wall time for
generating recommendations for all users.
Dataset Method H-mean #Params. Train time Inference time

Gowalla Teacher LWC-KD-PIW 0.1332 33.47M 14h 53m 2s 301.22s
Student CCD 0.1303 2.71M 52m 54s 49.14s

Yelp Teacher LWC-KD-PIW 0.0813 18.24M 1h 47m 47s 105.20s
Student CCD 0.0861 0.99M 5m 34s 6.56s
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Table 5: Results of various ablations on teacher system.
After 𝐷4 After 𝐷5Method LA RA H-mean LA RA H-mean

CCD 0.1209 0.0950 0.1064 0.1198 0.0914 0.1037
w/o student-side knowledge 0.1083 0.0491 0.0676 0.1075 0.0499 0.0682
w/o proxies (student only) 0.0933 0.0683 0.0789 0.0956 0.0666 0.0785
w/o annealing 0.1021 0.0645 0.0791 0.1034 0.0649 0.0797

Table 6: Results of various ablations on student model.

Method After 𝐷4 After 𝐷5
LA RA H-mean LA RA H-mean

CCD 0.1090 0.0913 0.0994 0.1100 0.0878 0.0977

Proxy-guided
learning

w/o proxy learning 0.0972 0.0656 0.0783 0.0965 0.0596 0.0737
w/o S-proxy 0.0959 0.0713 0.0818 0.0965 0.0727 0.0829
w/o P-proxy 0.0981 0.0694 0.0813 0.0981 0.0713 0.0826

Proxy
update

extreme stability 0.1035 0.0904 0.0965 0.1052 0.0869 0.0952
extreme plasticity 0.1062 0.0910 0.0980 0.1075 0.0871 0.0962

5.3 Study of CCD
We provide comprehensive analyses for an in-depth understanding
of CCD. We report the results with the GNN-based student on Yelp.

5.3.1 Ablation study. We present the ablation study of CCD to
demonstrate the effectiveness of each proposed component.
Teacher side. Table 5 presents the ablation results on the teacher.
From §4.4, we exclude three proposed components: (1) ‘w/o student-
side knowledge’ excludes LS→T, (2) ‘w/o proxies (student only)’
only uses the updated student excluding the proxies in LS→T, and
(3) ‘w/o annealing’ excludes the loss annealing. First, excluding
the student-side knowledge largely degrades the effectiveness of
CCD, and the best performance is achieved by leveraging both the
updated student and the proxies accumulating the historical knowl-
edge. Also, the simple annealing that gradually reduces the impacts
of the student-side knowledge effectively improves the teacher.
Student side. Table 6 presents the ablation results on the stu-
dent. First, we examine the effects of proxy-guided replay learning
(§4.3.2). ‘w/o proxy learning’ excludes L𝑅𝐸 , and ‘w/o S-/P-proxy’
exclude the stability proxy and the plasticity proxy, respectively.
We observe that both proxies are indeed beneficial for the student,
as they provide complementary views of the previous knowledge,
as shown in Figure 3. Second, we investigate the effect of𝑤𝑆𝑃 and
𝑤𝑃𝑃 , used to update the proxies in Eq.4. We assess the extreme
case for each proxy. When 𝑤𝑆𝑃 = 0, the stability proxy does not
accept any recent knowledge (i.e., extreme stability). Conversely,
when 𝑤𝑃𝑃 = 1, the plasticity proxy is entirely replaced by the
recent knowledge (i.e., extreme plasticity). The best performance
is achieved when both proxies are updated with an appropriate
balance. However, as long as the proxies accumulate past knowl-
edge, the choice of update weights has little impact on the final
performance. We set𝑤𝑆𝑃 = 0.1 and𝑤𝑃𝑃 = 0.9, respectively.

5.3.2 Impacts of the replay size. Figure 5 presents the perfor-
mance (Recall@20) of the student model trainedwith varying replay
sizes in Eq.6. The best performance is achieved with a small sam-
pling size (≤ 3), suggesting that our proxy-guided replay learning
does not notably increase the training complexity.

5.3.3 Analysis on dormant/new users. We further analyze the
recommendation quality of the student for specific user groups
having distinct characteristics. In Table 7, we present the recom-
mendation performance for dormant users who haven’t used the
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Figure 5: Performance with varying replay sizes.

Table 7: Recommendation performance on dormant users.
Method Recall@20 NDCG@20

LWC-KD-PIW 0.0081 0.0024
KD + Fine-Tune 0.0645 0.0286

CCD 0.0806 0.0311

Table 8: Effects of new entity initialization on new users.
Student Teacher

Recall@20 NDCG@20 Recall@20 NDCG@20
CCD 0.1313 0.0559 0.1500 0.0605
w/ random init. 0.1270 0.0546 0.1387 0.0573
w/ one-hop init. 0.1116 0.0436 0.1037 0.0420

system for an extended period. We select users who were active in
𝐷1, remained dormant from 𝐷2 to 𝐷4, and became active again in
𝐷5. We evaluate performance for the users on the test set of𝐷5, after
updating the student up to 𝐷4. We compare the baselines that show
high effectiveness in previous experiments. We observe that CCD
generates more accurate recommendations for the dormant users,
indicating that CCD effectively preserves previous knowledge.

In Table 8, we present the average recommendation perfor-
mance for new users for each data block. CCD proposes to use
the prominent-entity information to facilitate the understanding of
new entities (§4.3.1). To assess its effectiveness, we report the results
when replacing the proposed technique with conventional random
initialization and the widely used 1-hop initialization [34, 41]. The
proposed technique effectively enhances the student’s ability to
adapt to new entities. Moreover, as the teacher subsequently lever-
ages the student-side knowledge, it leads to further improvement
in teacher performance. These results collectively show that CCD
achieves a good balance between stability and plasticity.

6 CONCLUSION
We propose CCD framework for effective and efficient deployment
through a compact student model having the high performance of
the massive teacher system, while aptly adapting to continuously
incoming data. Unlike the existing KD studies have focused on
one-time distillation in static environments, CCD updates both the
teacher and the student continually and collaboratively along the
data stream. CCD facilitates the student’s effective adaptation to
new data, while also enabling the teacher to fully leverage accu-
mulated knowledge. Given its great compatibility with existing
models, we expect that our CCD framework can provide a better
accuracy-efficiency trade-off for practical recommender systems.
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A APPENDIX
The source code of CCD is publicly available through the author’s
GitHub repository.2

A.1 List-wise distillation
The list-wise distillation [12, 16, 24] trains the student to emulate
the item permutation (i.e., ranking orders) predicted by the teacher.
Specifically, they define a probability for observing each permuta-
tion based on the Plackett-Luce model [27], then train the student
to maximize the likelihood of the teacher permutations [42]. For
each user 𝑢, the item ranking list predicted by 𝑅𝑆𝑇 is denoted by
𝜋𝑇𝑢 . The list-wise KD loss is defined as the negative log-likelihood
of permutation probability [16]:

L𝐾𝐷 = −
∑︁
𝑢∈U

log 𝑝 (𝜋𝑇𝑢 | 𝑆) = −
∑︁
𝑢∈U

log
𝑁∏
𝑛=1

exp
(
𝑟𝑆
𝑢,𝜋𝑇𝑢 (𝑛)

)
∑ | I |
𝑖=𝑛

exp
(
𝑟𝑆
𝑢,𝜋𝑇𝑢 (𝑖 )

) .
(10)

𝜋𝑇𝑢 (𝑛) denotes the𝑛-th item in 𝜋𝑇𝑢 .𝑁 is a hyperparameter reflecting
the length of the recommendation list. In this work, we set 𝑁 = 50
[16]. By minimizing the loss, the student model learns to preserve
the detailed ranking orders of top-𝑁 items in 𝜋𝑇𝑢 , while penalizing
the remaining items below the 𝑁 -th rank.

This distillation approach has shown remarkable performance
in many applications such as recommendation [12, 16, 17, 24] and
document retrieval [31, 47]. Although more complicated variants
have been studied, we obtained satisfactory results with the default
distillation loss. We assessed the effectiveness of this distillation in
our experimental setup, and the results are presented in Table 10.

A.2 Experiment details
A.2.1 Dataset. We use two public datasets with real-world user-
item interactions: Gowalla3 and Yelp4. We filter out users and items
with fewer than 10 interactions in both datasets. The total data
statistics after preprocessing are summarized in Table 9.

Table 9: Dataset statistics.
Dataset #Users #Items #Interactions Sparsity(%)
Gowalla 29,858 40,988 1,027,464 99.91
Yelp 14,950 12,261 342,617 99.81

A.2.2 Teacher and student configuration. We provide the de-
tailed configuration of the teacher and the student used in the
experiments. Table 10 presents the number of learning parameters
as well as the effectiveness of distillation in our setup.
Teacher. Following the teacher configuration of the recent KD
work [16], we construct a massive teacher system by ensembling
multiple large models. Initially, we evaluate the effectiveness of five
different recommendation models for each dataset: matrix factoriza-
tion (MF) [32], metric learning [11], deep neural network [9], graph
neural network (GNN) [8], and variational autoencoder (VAE) [25].
Subsequently, we select up to two models for each dataset that
2https://github.com/Gyu-Seok0/CCD_KDD24
3https://snap.stanford.edu/data/loc-gowalla.html
4https://www.yelp.com/dataset

demonstrate high performance. Lastly, we incrementally increase
the capacity of the teacher system by augmenting the number of
models or dimension sizes until its performance no longer improves.
For Gowalla, we construct the teacher system using five MF-based
models [32] and two VAE-based models [25], each initialized with
distinct random seeds and set to 64 dimensions. For Yelp, we employ
five GNN-based models [8], each initialized with distinct random
seeds and set to 128 dimensions. We adopt the ensemble scheme
utilized in [16].
Student. For the student, we employ two backbone models: MF-
based model [32] and GNN-based model [8]. We set a small embed-
ding size for the student (16 for Gowalla and 8 for Yelp), considering
the teacher size for each dataset.
Effectiveness of KD.We assessed the effectiveness of the list-wise
KD technique (A.1) on our teacher-student setup. The recommen-
dation performance after the distillation is presented in Table 10.

Table 10: Recall@20 results after distillation for each data
block. #Params. denotes the number of parameters.

Dataset 𝐷1 𝐷2 𝐷3 𝐷4 #Params.
Teacher 0.1849 0.1708 0.1698 0.1768 33.47MGowalla Student 0.1822 0.1686 0.1652 0.1677 1.13M
Teacher 0.1237 0.1117 0.1244 0.1195 18.24MYelp Student 0.1161 0.1138 0.1256 0.1147 0.22M

https://github.com/Gyu-Seok0/CCD_KDD24
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